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Abstract 

Using the total probability theorem, we propose a method to 

calculate the failure rate of a linear vibratory system with random 

parameters excited by stationary Gaussian processes. The response of 

such a system is non-stationary because of the randomness of the 

input parameters. A space-filling design, such as optimal symmetric 

Latin hypercube sampling or maximin, is first used to sample the 

input parameter space.  For each design point, the output process is 

stationary and Gaussian. We present two approaches to calculate the 

corresponding conditional probability of failure. A Kriging 

metamodel is then created between the input parameters and the 

output conditional probabilities allowing us to estimate the 

conditional probabilities for any set of input parameters.  The total 

probability theorem is finally applied to calculate the time-dependent 

probability of failure and the failure rate of the dynamic system.  The 

proposed method is demonstrated using a vibratory system. Our 

approach can be easily extended to non-stationary Gaussian input 

processes. 

Introduction 

The response of a vibratory system with random parameters 

excited by stationary Gaussian processes is a non-stationary random 

process. A time-dependent reliability analysis is thus, needed to 

calculate the probability that the system will perform its intended 

function successfully for a specified time. 

Reliability is an important engineering requirement for 

consistently delivering acceptable product performance through time. 

As time progresses, the product may fail due to time-dependent 

operating conditions and material properties, component degradation, 

etc. The reliability degradation with time may increase the lifecycle 

cost due to potential warranty costs, repairs and loss of market share. 

In this article, we use time-dependent reliability concepts associated 

with the first-passage of non-repairable systems. Among its many 

applications, the time-dependent reliability concept can be used to 

reduce the lifecycle cost [1] or to set a schedule for preventive 

condition-based maintenance [2].  

The time-dependent probability of failure, or cumulative 

probability of failure [1, 3], is defined as 

          0,,:,0,0  ttgTtPTfP FX          (1) 

where the limit state    0,, ttg ZX   depends on the vector 

 mXXX 21X  of m input random variables, the 

vector         tFtFtFt n21F  of n input random 

processes. Failure occurs if   0g  at any time  Tt ,0  where 

T is the time of interest.  

The time-dependent probability of failure of Eq. (1) can be 

calculated exactly as 
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where 
0

f
P  is the instantaneous probability of failure at the initial time 

and )(t is the failure rate. Eq. (2) indicates that  T
f

P ,0 can be 

calculated if )(t is known and vice versa. 

In the commonly used up-crossing rate approach, the failure rate 

is approximated by the up-crossing rate       
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under the assumptions that  the probability of having two or more 

out-crossings in  ttt ,  is negligible, and the out-crossings in 

 ttt ,  are statistically independent of the previous out-

crossings in  t,0 . Eq. (2) is then used to estimate  T
f

P ,0 . 

Monte Carlo simulation (MCS) can accurately estimate the 

probability of failure of Eq. (1) but it is computationally prohibitive 

for low failure of probability problems. To address the computational 

issue of MCS, analytical methods have been developed based on the 

out-crossing rate approach which was first introduced by Rice [4] 

followed by extensive studies [3, 5-7]. The PHI2 method [3] uses two 
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successive time-invariant analyses based on FORM, and the binomial 

cumulative distribution to calculate the probability of the joint event 

in Eq. (3). A Monte-Carlo based set theory approach has been also 

proposed [8] using a similar approach with the PHI2 method. 

Analytical studies such as in [9, 10] have shown that the PHI2-based 

approach lacks sufficient accuracy for vibratory systems. Other 

analytical approaches have been however, proposed to estimate the 

time-dependent probability of failure with sufficient accuracy [11, 

12]. 

The limited accuracy of the out-crossing rate approach has been 

improved by by solving an integral equation involving  t
  and 

 1, tt


 , the joint up-crossing rate between times t and 
1t

 [13]. 

The up-crossing rate  t
  is defined in Eq. (3) and the joint up-

crossing rate  1, tt


  is defined as 
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              (4) 

This approach has been adopted in [10]. 

 

Among the simulation-based methods, a MCS approach was 

proposed in [14] to estimate the time-dependent failure rate over the 

product lifecycle and its efficiency was improved using an 

importance sampling method considering a decorrelation length [15] 

in order to reduce the high dimensionality of the problem. Subset 

simulation [16] has been also developed as an efficient simulation 

method for computing small failure probabilities for general 

reliability problems. Its efficiency comes from introducing 

appropriate intermediate failure sub-domains to express the low 

probability of failure as a product of larger conditional failure 

probabilities which are estimated with much less computational 

effort. An extreme value method has also been proposed [17] using 

the distribution of the extreme value of the response. Recently, a 

time-dependent reliability analysis was proposed [18] using the total 

probability theorem and the concept of composite limit state. 

In this paper, we present a time-dependent reliability analysis for 

dynamic systems with random parameters excited by a stationary 

Gaussian process using the total probability theorem. Metamodels are 

used to estimate conditional probabilities needed by the total 

probability theorem. An advantage of our approach is that we can 

easily handle non-normal and correlated random variables without 

additional computational effort.    
The paper is arranged as follows. Section 2 describes the 

proposed methodology with all necessary details. Section 3 uses a 

beam example to demonstrate all developments and Section 4 

summarizes, concludes and highlights future research. 

 

Proposed Approach 

We consider the following n degree-of-freedom (DOF) linear 

vibratory system with random parameters  

                ttktctm FYXYXYX        (5) 

where         tYtYtYt n21Y  is the vector of output 

(response) random processes, 

        tFtFtFt n21F  is the vector of input (force) 

random processes, and  mXXX 21X  includes m 

input random variables (see Figure 1). The mass  m , damping  c  

and stiffness  k  matrices depend on X. Although our approach can 

handle all n random processes in  tY  and  tF , we will consider 

the case with only one input   nitFi 1,  and one output 

  njtY j 1,  for simplicity. Figure 1 provides a schematic 

with the input-output notation. 

 

Figure 1. Schematic of linear vibratory system. 

Total Probability Theorem Approach 

The calculation of the time-dependent probability of failure (i.e., 

the probability of the response exceeding a threshold) is very 

challenging because of the random parameters X. For each realization 

of X however, the linear vibratory system of Eq. (5) has constant 

coefficients (matrices  m ,  c  and  k ). The problem then becomes 

much easier if the system is excited by wide-sense stationary 

processes  tF . The total probability theorem allows us to calculate 

the  tfP ,0  of the dynamic system with random parameters in terms 

of conditional probabilities of dynamic systems with constant 

parameters. 

According to the total probability theorem, the time-dependent 

probability of failure of Eq. (1) can be expressed as [18]  

                      xx
XX

dfFPFPTfP 


,0          (6) 

where  
X

FP  is a time-dependent conditional probability of failure, 

 xXf  is the joint PDF of the input random variables X and   is 

the support of  xXf . The integral of Eq. (6) can be calculated 

using numerical integration schemes if the number n of random 

variables is small (e.g. less than 5). Otherwise, Monte Carlo 

simulation or importance sampling methods can be used. In all cases, 

 
X

FP  is calculated directly or using a pre-built metamodel as is the 

case in this paper. An advantage of the total probability theorem is 

that non-normal and correlated random variables are handled without 

additional computational effort or loss of accuracy. 

Calculation of Conditional Probability  
X

FP  

We assume that the input random process  tF  is a wide-sense 

stationary and Gaussian random process with zero mean and a 
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constant standard deviation, characterized fully by the power spectral 

density (PSD)  FFS . In this case, for each realization of the 

input random variables X, the output process  tY  is also wide-

sense stationary and Gaussian with zero mean, a constant standard 

deviation and a PSD of 

      FFYY SHS
2

           (7) 

where  H  is the frequency response function of the system 

between the ith (input) and jth (output) degrees of freedom (DOF) 

[19]. 

For a real-life, multi-degree of freedom system with millions of 

DOF, the calculation of  H  is computationally intensive. It is 

desired therefore to minimize the number of times  H  is 

calculated. Our approach using the total probability theorem reduces 

the number  H  is calculated considerably. 

According to the Wiener-Khintchine theorem, the Fourier 

transform of the  YYS  spectrum provides the autocorrelation 

function  YYR  of the output process. Because both  YYS  and 

 YYR  are real and even functions, we have [19] 

                 


 dSR YYYY cos
1

0




 .         (8) 

Note that for a wide-sense stationary process,  

         22
YYYY tYtYER            (9)  

where 11    is the correlation coefficient 

and    YtYE  and   YtY   . The covariance function is 

       

         

    2

,,

YYYYY

YYYY

RC

tYEtYEttRttC








(10)   

Knowing the covariance function of the output process, we can 

use a spectral decomposition method to express the output process as 

a linear combination of the eigenvectors of the covariance matrix 

where the coefficients are independent standard normal random 

variables. The time interval of interest  T,0  is discretized using N 

discrete times Tttt N  ,,,0 21  and the NN   covariance 

matrix    NjNittCov ji ,,2,1;,,2,1,,  Σ  is 

formed where       YYjiYYiji RttCtttCov  ,,  is 

the covariance between times 
it  and 

jt provided by Eq. (10). 

Let  
T

ΦΛΦΣ   be the spectral decomposition of the 

covariance matrix Σ  where  NΦΦΦΦ 21  is the 

orthonormal matrix of the eigenvectors Nii ,,1, Φ  and 

 Ndiag  21Λ  is the diagonal matrix of the 

corresponding eigenvalues.  Also, let  NZZZ 21Z  be a 

vector of N independent standard normal variables. Because of the 

affine transformation property of the multi-normal distribution, the 

following spectral representation holds 

             i

r

i

T
iiY ZtttY  

1

Φ          (11) 

where 
Ntttt ,,, 21   and Nr   is the number of dominant 

eigenvalues. Eq. (6) can be used to generate sample functions 

(trajectories) of  tY . The Expansion Optimal Linear Estimation 

method (EOLE) or the Orthogonal Series Expansion (OSE) [20] can 

also be used.  

Since Eq. (11) provides a discretized version of the output 

process, we can use Monte Carlo simulation to calculate the time-

dependent probability of failure. However, MCS will be 

computationally very demanding considering that the time of interest 

T can be long and the time step t  very small. To reduce the 

computational effort, we use in this paper the total probability 

theorem. 

We use two approaches to estimate  
X

FP . The first one 

assumes that the up-crossings are statistically independent while the 

second approach does not. 

Approach 1: Statistically Independent Up-crossings 

The    TPFP f ,0
X

 is estimated using Eq. (2) where the 

failure rate  t  is approximated by the up-crossing rate  tv  (i.e., 

   tvt  ). Because the excitation process is Gaussian and wide-

sense stationary and the dynamic system is linear with constant 

parameters, the up-crossing rate of threshold  is constant given by 

[19] 

2

5.0

0)(












  Yevvtv




        (12) 

where 

            

Y

Yv




2
0




          (13) 

is the up-crossing rate for 0  and  

     dSYYY
)(2






         (14) 

is the standard deviation of the derivative process  tY . 
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Approach 2: Statistically Dependent Up-Crossings 

This approach demonstrates the significance of considering the 

correlation among up-crossings in [0, T]. We define the failure event 

as        0,,:,0  tYttgTtF FX . The 

probability   TttPf 0,,0  is then given by 

                dfPPtP
t

fff 
0

00 1,0        (15) 

where  tf  is the PDF of the first time to failure and 

             00 YPPf
         (16) 

is the instantaneous probability of failure at 0t . 

The up-crossing rate at time t  is the probability that the first up-

crossing occurred at t  or at a previous time  .  This is expressed as 

[13, 10] 

       
 

t

dftvtftv
0

)()|()()(                    (17) 

where )|( tv is the up-crossing rate at t  conditioned on the time 

of the first up-crossing being  . Based on Eq. (17), )(tf has the 

following upper bound  

                                     )()( tvtf                                           (18) 

because the integral is a non-negative quantity. 

The joint up-crossing rate ),( 1tv 
, indicating the probability 

that an up-crossing occurs at both t  and t1 , can be expressed as 

      
 

1

0

222111 )()|,()()|(),(



 dftvtftvtv     (19) 

since the up-crossing at 1  is the first or the first up-crossing has 

occurred at some previous time 12   . Integration of Eq. (19) and 

substitution in Eq. (17) yields, 

          

 











t

t

ddftv

dtvtvtf

0 0

12221

0

11

1

)(),(

),()()(







         (20) 

Because the integral in Eq. (20) is non-negative, )(tf has the 

following lower bound  

                          
 

t

dtvtvtf
0

11),()()(  .                   (21) 

If we continue the process of using Equations (17) and (19) to 

derive Eq. (20), the following Rice’s inclusion-exclusion series [4, 

19] can be obtained  

  1

0 0 0

111

1

2

1 1

),,,(1)()( 

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



  


 i

t

i
i

i

i

ddtvtvtf
i



 



            (22) 

where 

          

 
 













 







3

2

)( iifv

iifv

vi
        (23) 

The PDF )(tf  is then used in Eq. (15) to obtain the time-dependent 

probability of failure ),0( tPf . 

For the series of Eq. (22) to converge, we may need many terms; i.e., 

joint up-crossing rates of higher order (large i). To avoid this, the 

integral Eq. (17) can be modified as 

                 
  


 

t

df
v

tv
tftv

0

)(
),(

)()( 



                  (24) 

where the conditional probability definition is used to replace the  

conditional up-crossing rate )|( tv  with 
 






v

tv ),(
 where 

)(v  is the up-crossing rate for the first up-crossing. Because the 

up-crossing rate for the first up-crossing is not known, an 

approximation is obtained if )(v  is the up-crossing rate for any 

up-crossing at t . It was shown in [10, 13] that this 

approximation provides accurate results. The example in this paper 

verifies this claim.  

In our Approach 2, we solve the integral Eq. (24) for )(tf  and 

then use it in Eq. (15) to obtain the time-dependent probability of 

failure ),0( tPf . 

Note that if all up-crossings are assumed statistically 

independent, the high level joint up-crossing rate ),,,( 11 


i
i tv    

in Eq. (22) is equal to 
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          1111 ),,,( 



  ii

i vvtvtv    .        (25a) 

If in addition, the process is stationary, the up-crossing rate does not 

depend on time and 

             iii
i vvvtvtv 





  1111 ),,,(   .     (25b) 

In this case, the Rice’s series of Eq. (22) yields 

       tvev
t

v
t

vtvvtf
  

62
)(

3
4

2
32

.    (26) 

Therefore, the failure rate  

      



























v
e

ev

ee

ev

dttf

tf
t

tv

tv

tv

tv

t
][1

)(1

)(
)(

0

0

       (27) 

is constant and equal to the up-crossing rate 
v . 

Calculation of ),( tv   for Approach 2 

In Eq. (24), we need the up-crossing rate )(v  and the joint 

up-crossing rate ),( tv 
. The former is constant for each 

realization of X and is calculated using Eq. (12). We use the 

following steps to calculate ),( tv 
: 

 Based on Eq. (3),   tvFSP ttt  
 where tS  indicates 

the safe event at t and ttF  indicates the failure event at 

tt  . 

 Calculate an equivalent reliability index  tv  1 . 

Because of stationarity at a realization of X,   is the same for 

event  tFS   . 

 Calculate the intersection probability ,tP using the bivariate 

standard normal CDF 2  as [18] 

 

 
 












dec

Pt

 











arccos

222

2,

coscos2
2

1
exp

2

1

,,

where   is obtained from the previous step and  is the 

correlation coefficient between the linear safety margins at t and 

 . 

 Based on the definition of Eq. (4), we have     

 2,),( tPtv t 
 . 

Vibratory Beam Example 

We demonstrate the proposed approach using the single degree 

of freedom system of Figure 2 adopted from [21]. A concentrated 

mass M  is placed at the mid-span of a massless beam of length 

mL 4 .  A random load  tF  is applied on the mass which 

deflects by  ty  as shown in the figure. The beam is made of steel 

with Young modulus GPaE 210  and density 

37850
m

Kg
 . The beam has a rectangular cross section of 

width b  and height h and provides a stiffness 
3

6

L

EI
K   to the 

mass-damper system with 
12

3bh
I   being the area moment of 

inertia. There is also a damper C attached to the mass.    

 

Figure 2 . Beam under random loading [21] 

The parameters M, b and h are normally distributed with 

kgM 100 , mb 01.0 , mh 05.0  and 

kgM 5 , mb 001.0 , mh 005.0 . The random load 

 tF  is a zero mean, wide-sense stationary process with the 

following Pierson-Moskowitz spectrum 

                   
4

5
)( 




B

FF e
A

S



                                (28) 

where 
429 sec10*5.6  NA  and 

4sec219,36 B (see 

Figure 3). 
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Figure 3. Input force spectrum 

The equation of motion for the system is  

                                 )(tFtKytyCtyM   .                    (29) 

The undamped natural frequency is 
3

6

ML

EI
n  . A damping ratio 

3.0 is used resulting in a damping value of nMC 2 . The 

mean value of the undamped natural frequency is 12.8 rad/sec. The 

failure event is defined as 

                002.0,,:,0  tYttgTtF FX  

indicating that we have failure if the response  ty  exceeds the 

threshold m02.0 .  

For the linear, one degree of freedom vibratory system of Eq. 

(29), the transfer function is  

       
KjCMF

Y
H









2

1

)(

)(
)(                      (30) 

and the output spectral density is 

2222

2

)(

)(
)(|)(|)(






CMK

S
SHS FF

FFYY


  .        (31) 

Figure 4 compares the conditional time-dependent probability of 

failure  
X

FP  for kgM 100 , mb 01.0 and mh 05.0  

(mean value point of the three random variables) among Approach 1, 

Approach 2 and MC simulation. The MC results have been obtained 

with 20,000,000 replications. As expected, assuming that the up-

crossings are statistically independent and using Eq. (2) with 

   vt  to calculate the  
X

FP , overestimates the actual 

probability. However the results of Approach 2, using Eq. (24) and 

Eq. (15), are very close to MCS.  

 

Figure 4. Comparison of conditional time-dependent probability of failure 

 
X

FP  for M=100 kg, b=0.01 m and h=0.05 m 

Approach 1 

We first developed a Kriging metamodel for 
v  (Eq. 12) in 

order to avoid calculating repeatedly the expensive transfer function 

)(H needed to calculate the output spectrum )(YYS  in Eq. (14). 

Note that although )(H  is not computationally expensive in this 

example, it is very expensive for large-scale vibratory systems with 

many DOF. We also developed another Kriging metamodel for 
0
fP  

in Eq. (2). According to the total probability theorem, the time-

dependent  TPf ,0  of the system is the mean value of the 

conditional  
X

FP . We generated 10,000 replications of 
v  and 

0
fP  from the metamodels, and Eq. (2) was used for each replication 

to calculate  
X

FP  using 
 vt)( .  

For the Kriging metamodels, we used an Optimal Symmetric 

Latin Hypercube (OSLH) design [22] to sample the design space.  

The range of values for each random variable was 

  3,3  .  We started with 20 design points, and increased 

the number of points in increments of 10 until convergence of 

 30,0 TPf  was reached.  The “leave-one-out” validation 

procedure was also used for a few points in the design space to check 

the accuracy of the Kriging metamodels.  Thirty design points were 

needed for convergence (see Figure 5). The DACE Matlab Toolbox 

was used to build the Kriging metamodels.  A second-order, Gaussian 

correlation structure was used for the metamodel of 
v , and a first-

order, Gaussian correlation structure was used for the metamodel of 
0
fP . 
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Figure 5. Design of 30 OSLH points 

Figures 6 and 7 show the output spectra and the corresponding 

autocorrelation functions for the 30 OSLH design points. 

 

Figure 6. Output spectra for the 30 OSLH points 

 

 

Figure 7. Autocorrelation function for the 30 OSLH points 

Approach 2 

The total probability theorem of Eq. (6) was used. To determine 

the time-dependent conditional probability  
X

FP  for a realization 

 hbMX  of the random variables, we first solved the 

integral Eq. (24) numerically for the PDF  tf of the first time to 

failure for  300  t  using a sec4.0t  time step. 

Subsequently, Eq. (15) was used to calculate 

    TttPFP f  0,,0
X

. 

The  
X

FP  curve was calculated for each point of an OSLH 

design similarly to Approach 1. The same 30 OSLH points were 

used. Figure 8 shows all curves. A time-dependent metamodel [23] 

was then developed using a singular value decomposition method. 

 

Figure 8.  
X

FP  curves for the 30 OSLH points for Approach 2 

 

Figure 9 compares the time-dependent probability of failure 

between the two approaches. Because of the statistically independent 

assumption of the up-crossings, the Approach 1 overestimates the 

probability of failure. The results from Approach 2 are much more 

accurate as shown in Figure 4 where Approach 2 is much closer to 

MCS for the case where all random variables are at their means. 

Figure 10 compares the time-dependent failure rate calculated using 

the two approaches. Figure 11 shows the joint up-crossing rate 

),( tv 
 for the design point with all random variables at their 

mean values. 
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Figure 9. Comparison of time-dependent probability of failure 

 

Figure 10. Comparison of time-dependent failure rate 

 

Figure 11. Joint up-crossing rate for design point with all random variables at 

their means 

 

 

 

Summary, Conclusions and Future Work 

We presented a methodology to calculate the time-dependent 

probability of failure and the failure rate of a linear vibratory system 

with random parameters excited by stationary Gaussian processes 

using the total probability theorem and an integral equation involving 

the up-crossing and joint up-crossing rates. An optimal symmetric 

Latin hypercube space-filling design is first used to sample the 

system random parameters. Time-dependent conditional probabilities 

are then calculated at each design point by solving an integral 

equation involving up-crossing and joint up-crossing rates as well as 

the PDF of the first time to failure. A time-dependent metamodel of 

the conditional probabilities is built and used in the total probability 

theorem to calculate efficiently and accurately the time-dependent 

probability of failure and the failure rate of the vibratory system. 

Our approach assumes a wide-sense stationary and Gaussian 

excitation. However, it can be easily extended to handle non-

stationary Gaussian excitations. An example of a simple vibratory 

system was used to demonstrate all developments. 
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